FMC 4 路千兆以太网模块 FL2121 用户手册

Rev 1.0

版权声明:

Copyright ©2012-2018 芯驿电子科技 (上海) 有限公司

公司网址:

Http://www.alinx.com.cn

技术论坛: http://www.heijin.org

官方旗舰店: <u>http://alinx.jd.com</u>

邮箱: avic@alinx.com.cn

电话: 021-67676997

传真: 021-37737073

ALINX 微信公众号:

文档修订记录:

版本	时间	描述
1.0	2022/11/20	First Release

第一部分 FMC 高速以太网模块说明介绍

黑金 FMC 千兆以太网模块 FL2121 为 4 路 10/100/1000Mbps 自适应的以 太网通信接口模块。 FMC 模块的千兆 PHY 芯片采用了 4 片景略半导体公司的 JL2121 以太网 PHY 芯片,支持 10/100/1000 Mbps 网络传输速率。4 路网络接 口采用常用的 RJ45 连接器跟外部网络连接和通信。

模块有一个标准的 LPC 的 FMC 接口,用于连接 FPGA 开发板, FMC 的连接器型号为: ASP 134604_01

FL2121 模块实物照片如下:

FL2121 模块实物图

1.1 FL2121 模块的参数说明

以下为 FL2121 千兆以太网模块的详细参数:

- ▶ 千兆以太网芯片:4片 JL2121
- ▶ 网络接口:4路 RJ45;
- ▶ 以太网通信速率: 支持 10/100/1000 Mbps;
- ➤ 通信方式: RGMII;
- ▶ 配置接口: MDIO 接口;
- ▶ 工作温度: -40°~85°;

1.2 FL2121 模块的结构图

FL2121 千兆以太网模块尺寸结构图

第二部分 模块功能说明

2.1 FL2121 模块原理框图

FL2121 模块的原理设计框图如下:

2.2 太网芯片

以太网芯片采用景略半导体的工业级以太网 GPHY 芯片 (JL2121-N040I) 为用户提供网络通信服务。PS 端的以太网 PHY 芯片是连接到 ZYNQ 的 PS 端 BANK502 的 MIO 接口上。PL 端的以太网 PHY 芯片是连接到 BANK66 的 IO 上。 JL2121 芯片支持 10/100/1000 Mbps 网络传输速率,通过 RGMII 接口跟 MPSOC 系统的 MAC 层进行数据通信。JL2121D 支持MDI/MDX 自适应,各种速度自适 应,Master/Slave 自适应,支持 MDIO 总线进行 PHY 的寄存器管理。

JL2121 上电会检测一些特定的 IO 的电平状态,从而确定自己的工作模式。 下表描述了 GPHY 芯片上电之后的默认设定信息。

配置 Pin 脚	说明	配置值
RXD3_ADR0	MDIO/MDC 模式的 PHY 地址	PHY Address 为 001
RXC_ADR1		
RXCTL_ADR2		
RXD1_TXDLY	TX 时钟 2ns 延时	延时
RXD0_RXDLY	RX 时钟 2ns 延时	延时

GPHY 芯片默认配置值

当网络连接到干兆以太网时, MPSOC 和 PHY 芯片 JL2121 的数据传输时通 过 RGMII 总线通信,传输时钟为 125Mhz,数据在时钟的上升沿和下降样采样。 当网络连接到百兆以太网时,MPSOC 和 PHY 芯片 JL2121 的数据传输时通 过 RMII 总线通信,传输时钟为 25Mhz。数据在时钟的上升沿和下降样采样。

2.3 模块 FMC LPC 的引脚分配:

下面只列了电源和网络芯片接口的信号, GND 的信号没有列出, 具体用户可以参考原理图。

Pin Number	Signal Name	Description
C35	+12V	12V 电源输入
C37	+12V	12V 电源输入
D32	+3.3V	3.3V 电源输入
C34	GAO	EEPROM 地址位 0 位
D35	GA1	EEPROM 地址位 1 位
D11	PHY1_MDC	以太网第一路 MDIO 管理时钟
C11	PHY1_MDIO	以太网第一路 MDIO 管理数据
D12	PHY1_RESET	以太网第一路复位信号
G6	PHY1_RXCK	以太网第一路 RGMII 接收时钟
G7	PHY1_RXCTL	以太网第一路接收数据有效信号
H4	REFCLK	50MHz 的参考时钟
Н7	PHY1_RXD0	以太网第一路接收数据 Bit0
Н8	PHY1_RXD1	以太网第一路接收数据 Bit1
G9	PHY1_RXD2	以太网第一路接收数据 Bit2
G10	PHY1_RXD3	以太网第一路接收数据 Bit3
H11	PHY1_TXCK	以太网第一路 RGMII 发送时钟
H14	PHY1_TXCTL	以太网第一路发送数据有效信号
H10	PHY1_TXD0	以太网第一路发送数据 Bit0
G12	PHY1_TXD1	以太网第一路发送数据 Bit1
G13	PHY1_TXD2	以太网第一路发送数据 Bit2
H13	PHY1_TXD3	以太网第一路发送数据 Bit3
D18	PHY2_MDC	以太网第二路 MDIO 管理时钟
C19	PHY2_MDIO	以太网第二路 MDIO 管理数据
H20	PHY2_RESET	以太网第二路复位信号
D8	PHY2_RXCK	以太网第二路 RGMII 接收时钟
D9	PHY2_RXCTL	以太网第二路接收数据有效信号
C10	PHY2_RXD0	以太网第二路接收数据 Bit0
D14	PHY2_RXD1	以太网第二路接收数据 Bit1
C15	PHY2_RXD2	以太网第二路接收数据 Bit2
D15	PHY2_RXD3	以太网第二路接收数据 Bit3
H17	PHY2_TXCK	以太网第二路 RGMII 发送时钟
H19	PHY2_TXCTL	以太网第二路发送数据有效信号
G16	PHY2_TXD0	以太网第二路发送数据 Bit0
H16	PHY2_TXD1	以太网第二路发送数据 Bit1
G18	PHY2_TXD2	以太网第二路发送数据 Bit2

G19	PHY2_TXD3	以太网第二路发送数据 Bit3
H28	PHY3_MDC	以太网第三路 MDIO 管理时钟
G28	PHY3_MDIO	以太网第三路 MDIO 管理数据
H29	PHY3_RESET	以太网第三路复位信号
D20	PHY3_RXCK	以太网第三路 RGMII 接收时钟
G21	PHY3_RXCTL	以太网第三路接收数据有效信号
G22	PHY3_RXD0	以太网第三路接收数据 Bit0
H22	PHY3_RXD1	以太网第三路接收数据 Bit1
D23	PHY3_RXD2	以太网第三路接收数据 Bit2
D24	PHY3_RXD3	以太网第三路接收数据 Bit3
H25	PHY3_TXD3	以太网第三路发送数据 Bit3
G27	PHY3_TXCTL	以太网第三路发送数据有效信号
H23	PHY3_TXD0	以太网第三路发送数据 Bit0
G24	PHY3_TXD1	以太网第三路发送数据 Bit1
G25	PHY3_TXD2	以太网第三路发送数据 Bit2
H26	PHY3_TXCK	以太网第三路 RGMII 发送时钟
H35	PHY4_MDC	以太网第四路 MDIO 管理时钟
H37	PHY4_MDIO	以太网第四路 MDIO 管理数据
H38	PHY4_RESET	以太网第四路复位信号
C22	PHY4_RXCK	以太网第四路 RGMII 接收时钟
C23	PHY4_RXCTL	以太网第四路接收数据有效信号
D26	PHY4_RXD0	以太网第四路接收数据 Bit0
C26	PHY4_RXD1	以太网第四路接收数据 Bit1
D27	PHY4_RXD2	以太网第四路接收数据 Bit2
C27	PHY4_RXD3	以太网第四路接收数据 Bit3
H32	PHY4_TXCK	以太网第四路 RGMII 发送时钟
H34	PHY4_TXCTL	以太网第四路发送数据有效信号
G31	PHY4_TXD0	以太网第四路发送数据 Bit0
H31	PHY4_TXD1	以太网第四路发送数据 Bit1
G33	PHY4_TXD2	以太网第四路发送数据 Bit2
G34	PHY4_TXD3	以太网第四路发送数据 Bit3
C30	SCL	EEPROM 的 I2C 时钟
C31	SDA	EEPROM 的 I2C 数据
G39	VADJ	VADJ电源输入
H40	VADJ	VADJ 电源输入

第三部分 硬件连接和测试

FL2121 模块和 FPGA 开发板的硬件连接很简单,只要把 FMC 接口跟开发板的 FMC 接口对插就可以,然后用螺丝固定。以下为黑金 AX7325 开发板的和

FL2121 模块的硬件连接图:

≻ 准备工作

第一步: 首先确认一下自己 PC 的网卡是否是千兆网卡,用户可以点击本地连接 查看,再用五类+或者六类网线连接开发板的网口和 PC 的网口。 第二步:修改 PC 的 IP 地址为 192.168.0.3。PC 的 IP Address 需要和程序中 mac_test.v 中设置一致,不然网络调试助手会接收不到开发板发送的 UDP 数据 包。

.source_mac_addr .TTL .source_ip_addr .destination_ip_addr .udp_send_source_port .udp_send_destination_port (48'h00_0a_35_01_fe_c0) (8'h80), (32'hc0a80002). (32'hc0a80003), (16 h1f90), (16'h1f90),

0#0		
200		
如果网络支持此功能,则可以获取自动	指派的 IP 设置。否则,你需要从网	3
妇亲玩百姓风处犹得道当的 19 设直。		
○自动获得 IP 地址(O)		
● 使用下面的 IP 地址(S):		
IP 地址(I):	192.168.0.3	
子网掩码(U):	255 . 255 . 255 . 0	
	<u>86 20 50657</u>	
○ 自动获得 DNS 服务器地址(B)		
●使用下面的 DNS 服务器地址(E):		
首选 DNS 服务器(P):		
备用 DNS 服务器(A):		
□ 退出时验证设置(L)	高级(V)	
	1-0-04(1)	

第三步(可选):安装 Wireshark 是为了方便用户网络通信的调试,安装光盘的 TOOL 目录下的网络抓包工具 Wireshark,我们在实验的时候可以用这工具来查 看 PC 网口发送的数据和接收到的数据的详细信息。

📶 wireshark-win32-1.4.9中文版

➢ 以太网通信测试

第一步:烧写 bit 文件到 FPGA 芯片。

第二步:按下开发板的 KEY2 按键,之后打开 CMD 窗口,输入 arp –a 查看 ARP 绑定结果,可以看到开发板的 IP 地址和 MAC 地址已经缓存。

■ 命令提示符			য়িন	×
Microsoft Windows [版	(本 10.0.10240]			^
(c) 2015 Microsoft Co	prporation. All rights p	served.		
C:\Users\Administrato	or>arp −a			
antes serve some me s				
接口: 192.168.72.1	0x2	ST 223		
Internet 地址	物理地址	类型		
192. 168. 72. 254	00-50-56-e3-68-e6	动态		
192. 168. 72. 255	ff-ff-ff-ff-ff	静态		
224.0.0.2	01-00-5e-00-00-02	静态		
224.0.0.22	01-00-5e-00-00-16	静态		
224. 0. 0. 252	01-00-5e-00-00-fc	静态		
224.0.1.60	01-00-5e-00-01-3c	静态		
234. 123. 12. 1	01-00-5e-7b-0c-01	静态		
238. 238. 238. 238	01-00-5e-6e-ee-ee	静态		
239. 255. 255. 250	01-00-5e-7f-ff-fa	静态		
255. 255. 255. 255	ff-ff-ff-ff-ff-ff	静态		
接口: 192.168.0.3	- 0x4			
Internet tktl	物理地北	类型		
192.168.0.2	00-0a-35-01-fe-c0	动态		
192. 168. 0. 255	ff-ff-ff-ff-ff	静态		
224.0.0.2	01-00-5e-00-00-02	静态		
224. 0. 0. 22	01-00-5e-00-00-16	静态		
224.0.0.251	01-00-5e-00-00-fb	静态		
224. 0. 0. 252	01-00-5e-00-00-fc	静态		
239. 255. 255. 250	01-00-5e-7f-ff-fa	静态		
255. 255. 255. 255	ff-ff-ff-ff-ff-ff	静态		
接口: 192.168.124.1 -	0x8			~

第三步:在 CMD 窗口中,输入 ping 192.168.0.2 查看 PC 与开发板是否 ping

通。

■ 命令提示符						Alach	X
239. 255. 255. 250 255. 255. 255. 255	01-00-5e-7f-ff-fa ff-ff-ff-ff-ff-ff	静态 静态					^
接口: 192.168.124.1 - Internet 地址 192.168.124.254 192.168.124.255 224.0.0.2 224.0.0.2 224.0.1.252 224.0.1.60 234.123.12.1 238.238.238 239.255.255.255 255.255.255	0x8 物理地址 00-50-56-e1-4d-ee ff-ff-ff-ff-ff-ff 01-00-5e-00-00-2 01-00-5e-00-00-16 01-00-5e-00-01-3c 01-00-5e-70-01-3c 01-00-5e-7b-0c-01 01-00-5e-7b-0c-01 01-00-5e-7f-ff-fa ff-ff-ff-ff-ff-ff	类动静静静静静静静静静静					
:\Users\Administrato	r>ping 192.168.0.2 具有 32 字节的数据: 复: 字节=32 时间 <ims t<br="">复: 字节=32 时间<ims t<br="">复: 字节=32 时间<ims t<br="">复: 字节=32 时间<ims t<br="">复: 字节=32 时间<ims t<="" td=""><td>TL=128 TL=128 TL=128 TL=128 TL=128</td><td></td><td></td><td></td><td></td><td></td></ims></ims></ims></ims></ims>	TL=128 TL=128 TL=128 TL=128 TL=128					
192.168.0.2 的 Ping 约 数据包:已发送 = 注返行程的估计时间(以, 最短 = Oms,最长 C:\Users\Administrato	統计信息: 4. 已接收 = 4, 丢失 = 毫秒为单位): = Oms, 平均 = Oms r>	0(0% 丢失),					,

第四步:打开 TOOL 目录下的网络调试助手并设置参数如下,再按连接按钮(这里的本地的 IP 地址为 PC 的 IP Address,本地端口需要跟 FPGA 程序中的一致,为 8080)。

	网络调试助手	(C■精装版	V3. 8. 2)		(- 🗆 ×
网络设置 (1) 协议类型 UDP (2) 本地IP地址 192.168.0.3 (3) 本地端口号 8080 ● 连接 接收区设置 「接收防闭文件 豆未撥收时间 十六进身圓示 暂停接收显示 復存動場	网络数据物收				
安送区设置 「自用文件数据源 「自动发送附加位 「发送完自动清空 「按十六进制发送 「数据流循环发送 发送间隔 1000 毫秒 文件载入 清除输入	http://www.cmsoft.	cn QQ:10865600			发送
(₫ 就绪!		发送	£:0 接	枚:100 🧊	1位计数 //

这时网络数据接收窗口会显示 FPGA 发给 PC 的以太网数据包"Hello ALINX HEIJIN"目标主机的 IP 地址需要和 FPGA 程序中的 IP 地址一致,目标端口号也需 要和 FPGA 程序的一致(8080)。如下图网络显示:

<u>∎ • / (</u>	网络调试助手(CⅢ精装版 V3.8)	×
网络设置 (1) 协议类型 UDP (2) 本地IP地址 192.168.0.3 (3) 本地端口号 8080 ● 断开 接收区设置 「接收转向文件 自动执行显示 十六进制显示 暫停接收显示 保存数据 清除完示	F F S S S S S S S S S S S S S S S S S S	
发送区设置 「 启用文件数据源 … 「 自动发送附加位 「 发送完自动清空 「 按十六进制发送 「 数据流循环发送 发送间隔 1000 毫秒	目标主机: 192.168.0.2 目标端(http://www.omsoft.on.QQ:10865600]: 8080
文件载入 清除输入		发送
🥑 就绪!	友送 : 0	接收: 300 复位计数

第五步:再在网络调试助手的发送窗口发送一大串字符,在网络的数据接收窗口我 们可以看到从 FPGA 返回的数据也变成刚发送的字符串。

	网络调试助手(CⅢ精装版 V3.8.2)	×
网络设置	网络数据接收	1
(1)协议类型	http://www.cmsoft.cn.QQ:10865600	
UDP 👻	http://www.cmsoft.cn QQ:10865600	
(2) 木地 旧地 址	http://www.cmsoft.cn QQ:10865600	
192 168 0 3		
132,100, 0 , 3		
(3) 本地端口号		
▲ 新开		
接收区设置	T.	
□ 接收转向文件		
□ 显示接收时间		
□ 十六进制显示		
□ 暂停接收显示		
保存数据 清除見示		
发送区设置	T	
□ 启用文件数据源		
□ 自动发送附加位		
□ 发送完自动清空		
□ 按十六进制发送		
□ 数据流循环发送	目标主机: 192.168.0.2 目标端口: 8080	
发送间隔 1000 毫秒 文件载入 清除输入	http://www.cmsoft.cn QQ:10865600	发送
● 网络设置	□	复位计数

也可以发送较少字符,低于 46 字节, FPGA 程序会自动补充至 46 字节,如下图:

	网络调试助手	(C∎精装版	V3. 8. 2)	2 ×
网络设置 (1) 协议类型 UDP ● (2) 本地IP地址 192.168.0.3 (3) 本地端口号 8080 ● 断开 接收区设置 街水装向文件 「显示接收时间 十六进制显示 暂停接收显示 196.4000	□ P P P P P P P P P P P P P P P P P P P				
发送区设置 「自用文件数据源 「自劫发送附加位 「发送完自动清空 「按十六进制发送 「数据流循环发送 发送间隔 1000 毫秒 文件载入 書除输入	目标主机: 「192.1 2	68.0.2	目标端]: 8080	发送
(● 就绪!		发送	: 74	接收 : 5031	复位计数

第六步:这一步对用户来讲是可选的,用户如果想查看更多数据包传输的信息,可以使用网络抓包工具 Wireshark 来查看 PC 的网卡接收和发送的网络数据。