FMC 4 通道高速 AD 模块 FL9627 用户手册

Rev 1.0

版权声明:

Copyright ©2012-2018 芯驿电子科技 (上海)有限公司

公司网址:

Http://www.alinx.com.cn

技术论坛: http://www.heijin.org

官方旗舰店: <u>http://alinx.jd.com</u>

邮箱: avic@alinx.com.cn

电话: 021-67676997

传真: 021-37737073

ALINX 微信公众号:

文档修订记录:

版本	时间	描述
1.0	2018/8/20	First Release

第一部分 FMC 高速 AD 模块说明介绍

黑金 FMC 高速 AD 模块 FL9627 为 4 路 125MSPS, 12 位的模拟信号转数 字信号模块。 FMC 模块的 AD 转换采用了 2 片 ADI 公司的 AD9627 芯片,每个 AD9627 芯片支持 2 路 AD 输入转换,所以 2 片 AD9627 芯片一共支持 4 路的 AD 输入转换。模拟信号输入的电压范围为-5V~+5V,接口为 SMA 插座。

模块有一个标准的 LPC 的 FMC 接口,用于连接 FPGA 开发板, FMC 的连接器型号为: ASP 134604 01

FL9627 模块实物照片如下:

FL9627 模块实物图

1.1 FL9627 模块的参数说明

以下为 FL9627 高速 AD 模块的详细参数:

- ▶ AD 转换芯片:2片 AD9627
- ▶ AD 转换通道:4路;
- ➢ AD 采样速率: 125MSPS;
- ➢ AD 采样数据位数: 12 位;
- ▶ 数字接口电平标准:+1.8V的 LVDS 电平
- ▶ AD 模拟信号输入范围:-5V~+5V;
- ▶ 模拟信号输入接口: SMA 接口;
- ▶ 配置接口: SPI 接口;
- ▶ 工作温度:-40°~85°;

1.2 FL9627 模块的结构图

FL9627 高速 AD 模块尺寸结构图

第二部分 模块功能说明

2.1 FL9627 模块原理框图

FL9627 模块的原理设计框图如下:

关于 AD9627 的电路具体参考设计请参考 AD9267 的芯片手册。

2.2 运放电路

板上通过 300Mhz 带宽的 AD8055 芯片和分压电阻把-5V~+5V 输入的电压 缩小成-1V~+1V。如果用户想输入更宽范围的电压输入只要修改前端的分压电阻 的阻值。

下表为模拟输入信号和 AD8055 运放输出后的电压对照表:

AD 模拟输入值	AD8055 运放输出
-5V	-1V
0V	0V
+5V	+1V

2.3 单端转差分及 AD 转换

-1V~+1V 的输入电压通过 AD8138 芯片转换成差分信号(VIN+ - VIN-), 差分信号的共模电平由 AD 的 CML 管脚决定。

下表为模拟输入信号到 AD8138 差分输出后的电压对照表:

AD 模拟输入值	AD8055 运放输出	AD8138 差分输出(VIN+-VIN-)
-5V	-1V	+1V
0V	0V	0V
+5V	+1V	-1V

如果 AD 配置成 Offset Binary Output Mode 的时候, AD 转换的值如下图所示:

Input (V)	Condition (V)	Offset Binary Output Mode
VIN+-VIN-	< VREF 0.5 LSB	0000 0000 0000
VIN+-VIN-	= -VREF	0000 0000 0000
VIN+-VIN-	= 0	1000 0000 0000
VIN+-VIN-	= +VREF - 1.0 LSB	1111 1111 1111
VIN+-VIN-	> +VREF – 0.5 LSB	1111 1111 1111

Table 16. Output Data Format

在模块电路设计中, AD9627 的 VREF 的值为 1V, 这样最终的模拟信号输入和 AD 转换的数据如下:

AD 模拟输入值	AD8055 运放	AD8138 差分输出	AD9627 数字输出
	输出	(VIN+-VIN-)	
-5V	-1V	+1V	11111111111
0V	0V	0V	100000000000
+5V	+1V	-1V	000000000000

从表中我们可以看出,-5V 输入的时候,AD9627 转换的数字值最大,+5V 输入的时候,AD9627 转换的数字值反而最小。

2.4 FL9627 数字输出时序

AD9627 双通道 AD 的数字输出配置成了+1.8V 的 LVDS 输出模式, 2 路通 道(A 和 B) 共用一对差分时钟信号和 12 对差分数据信号。数据输出的顺序为交 替输出,一路 AD 在时钟的上升沿输出,另外一路 AD 数据在时钟的下降沿输出。

Figure 3. LVDS Mode Data and Fast Detect Output Timing (Fast Detect Mode Select Bits = 001 Through Fast Detect Mode Select Bits = 100)

2.5 FL9627 LVDS 标准

从 AD9627 的芯片手册里我们可以看到, AD9627 输出的+1.8V LVDS 的电 平标准如下:

Parameter	Temperature	Min	Тур	Мах	Unit
LVDS Mode—DRVDD = 1.8 V					
Differential Output Voltage (Vod), ANSI Mode	Full	250	350	450	mV
Output Offset Voltage (Vos), ANSI Mode	Full	1.15	1.25	1.35	V
Differential Output Voltage (Vod), Reduced Swing Mode	Full	150	200	280	mV
Output Offset Voltage (V_{OS}), Reduced Swing Mode	Full	1.15	1.25	1.35	V

而 FPGA 芯片的+2.5V LVDS 输入的电平标准如下

Table 12: LVDS_25 DC Specifications

Symbol	DC Parameter	Conditions	Min	Тур	Max	Units
V _{CCO}	Supply Voltage		2.375	2.500	2.625	V
VIDIFF	Differential Input Voltage: $(\underline{Q} - \overline{Q}), \underline{Q} = High$ $(\overline{Q} - Q), \overline{Q} = High$		100	350	600	mV
VICM	Input Common-Mode Voltage		0.300	1.200	1.500	۷

说明 AD9627 输出的差分信号完全满足 FPGA 的+2.5V 的 LVDS 输入电平标

准。

2.6 模块 FMC LPC 的引脚分配:

下面只列了电源和 AD 芯片接口的信号, GND 的信号没有列出, 具体用户可以参考原理图。

Pin Number	Signal Name	Description
C35	+12V	12V 电源输入
C37	+12V	12V 电源输入
D32	+3.3V	3.3V 电源输入
C34	GAO	EEPROM 地址位 0 位
D35	GA1	EEPROM 地址位1位
D8	CLK1_125M	AD1 芯片的 125M 参考时钟输入
G6	AD1_DCO+	AD1 通道 A 和通道 B LVDS 的数据时钟输出-P.
G7	AD1_DCO-	AD1 通道 A 和通道 B LVDS 的数据时钟输出-N.
H7	AD1_DO+	AD1 通道 A 和通道 B LVDS 的数据 0 输出-P.
H8	AD1_DO-	AD1 通道 A 和通道 B LVDS 的数据 0 输出-N.
C10	AD1_D1+	AD1 通道 A 和通道 B LVDS 的数据 1 输出-P.
C11	AD1_D1-	AD1 通道 A 和通道 B LVDS 的数据 1 输出-N.
D11	AD1_D2+	AD1 通道 A 和通道 B LVDS 的数据 2 输出-P.
D12	AD1_D2-	AD1 通道 A 和通道 B LVDS 的数据 2 输出-N.
H10	AD1_D3+	AD1 通道 A 和通道 B LVDS 的数据 3 输出-P.
H11	AD1_D3-	AD1 通道 A 和通道 B LVDS 的数据 3 输出-N.
C14	AD1_D4+	AD1 通道 A 和通道 B LVDS 的数据 4 输出-P.
C15	AD1_D4-	AD1 通道 A 和通道 B LVDS 的数据 4 输出-N.
G12	AD1_D5+	AD1 通道 A 和通道 B LVDS 的数据 5 输出-P.
G13	AD1_D5-	AD1 通道 A 和通道 B LVDS 的数据 5 输出-N.
H13	AD1_D6+	AD1 通道 A 和通道 B LVDS 的数据 6 输出-P.
H14	AD1_D6-	AD1 通道 A 和通道 B LVDS 的数据 6 输出-N.
D14	AD1_D7+	AD1 通道 A 和通道 B LVDS 的数据 7 输出-P.
D15	AD1_D7-	AD1 通道 A 和通道 B LVDS 的数据 7 输出-N.
G15	AD1_D8+	AD1 通道 A 和通道 B LVDS 的数据 8 输出-P.
G16	AD1_D8-	AD1 通道 A 和通道 B LVDS 的数据 8 输出-N.
H16	AD1_D9+	AD1 通道 A 和通道 B LVDS 的数据 9 输出-P.
H17	AD1_D9-	AD1 通道 A 和通道 B LVDS 的数据 9 输出-N.
D17	AD1_D10+	AD1 通道 A 和通道 B LVDS 的数据 10 输出-P.
D18	AD1_D10-	AD1 通道 A 和通道 B LVDS 的数据 10 输出-N.
C18	AD1_D11+	AD1 通道 A 和通道 B LVDS 的数据 11 输出-P.
C19	AD1_D11-	AD1 通道 A 和通道 B LVDS 的数据 11 输出-N.
G9	AD1_SPI_CS	AD1 芯片的 SPI 通信片选信号
G10	AD1_SPI_SDIO	AD1 芯片的 SPI 通信数据信号
D9	AD1_SPI_SCLK	AD1 芯片的 SPI 通信时钟信号
G19	AD1_SMI_SCLK	AD1 监控信号串行输出时钟信号
G18	AD1_SMI_SDFS	AD1 监控信号串行输出数据帧同步信号

H19	AD1_SMI_SDO	AD1 监控信号串行输出数据信号
D20	CLK2_125M	AD2 芯片的 125M 参考时钟输入
C22	AD2_DCO+	AD2 通道 A 和通道 B LVDS 的数据时钟输出-P.
C23	AD2_DCO-	AD2 通道 A 和通道 B LVDS 的数据时钟输出-N.
G21	AD2_DO+	AD2 通道 A 和通道 B LVDS 的数据 0 输出-P.
G22	AD2_DO-	AD2 通道 A 和通道 B LVDS 的数据 0 输出-N.
H22	AD2_D1+	AD2 通道 A 和通道 B LVDS 的数据 1 输出-P.
H23	AD2_D1-	AD2 通道 A 和通道 B LVDS 的数据 1 输出-N.
C26	AD2_D2+	AD2 通道 A 和通道 B LVDS 的数据 2 输出-P.
C27	AD2_D2-	AD2 通道 A 和通道 B LVDS 的数据 2 输出-N.
G24	AD2_D3+	AD2 通道 A 和通道 B LVDS 的数据 3 输出-P.
G25	AD2_D3-	AD2 通道 A 和通道 B LVDS 的数据 3 输出-N.
H25	AD2_D4+	AD2 通道 A 和通道 B LVDS 的数据 4 输出-P.
H26	AD2_D4-	AD2 通道 A 和通道 B LVDS 的数据 4 输出-N.
D26	AD2_D5+	AD2 通道 A 和通道 B LVDS 的数据 5 输出-P.
D27	AD2_D5-	AD2 通道 A 和通道 B LVDS 的数据 5 输出-N.
G27	AD2_D6+	AD2 通道 A 和通道 B LVDS 的数据 6 输出-P.
G28	AD2_D6-	AD2 通道 A 和通道 B LVDS 的数据 6 输出-N.
H28	AD2_D7+	AD2 通道 A 和通道 B LVDS 的数据 7 输出-P.
H29	AD2_D7-	AD2 通道 A 和通道 B LVDS 的数据 7 输出-N.
G30	AD2_D8+	AD2 通道 A 和通道 B LVDS 的数据 8 输出-P.
G31	AD2_D8-	AD2 通道 A 和通道 B LVDS 的数据 8 输出-N.
H31	AD2_D9+	AD2 通道 A 和通道 B LVDS 的数据 9 输出-P.
H32	AD2_D9-	AD2 通道 A 和通道 B LVDS 的数据 9 输出-N.
G33	AD2_D10+	AD2 通道 A 和通道 B LVDS 的数据 10 输出-P.
G34	AD2_D10-	AD2 通道 A 和通道 B LVDS 的数据 10 输出-N.
H34	AD2_D11+	AD2 通道 A 和通道 B LVDS 的数据 11 输出-P.
H35	AD2_D11-	AD2 通道 A 和通道 B LVDS 的数据 11 输出-N.
D21	AD2_SPI_CS	AD2 芯片的 SPI 通信片选信号
D23	AD2_SPI_SDIO	AD2 芯片的 SPI 通信数据信号
D24	AD2_SPI_SCLK	AD2 芯片的 SPI 通信时钟信号
G37	AD2_SMI_SCLK	AD2 芯片监控信号串行输出时钟信号
G36	AD2_SMI_SDFS	AD2 芯片监控信号串行输出数据帧同步信号
H37	AD2_SMI_SDO	AD2 芯片监控信号串行输出数据信号
H20	AD_SYNC	数字同步信号
C30	SCL	EEPROM 的 I2C 时钟
C31	SDA	EEPROM 的 I2C 数据
G39	VADJ	VADJ电源输入
H40	VADJ	VADJ电源输入

第三部分 AD 采样 DEMO 程序说明

我们提供了黑金 FPGA 开发板的 AD 采集和显示的例程,在这个例程中 2 个 AD9627 输入的差分 LVDS 时钟信号和差分 LVDS 数据信号通过 IBUFDS 模块分 别转换成单端信号,12 位的数据再通过 IDDR 模块转换成 A 通道 12 位数据和 B 通道 12 位数据。A 通道和 B 通道的 12 位数据通过 ILA 在线 debug 观察。

上电后,需要对 AD9267 的寄存器进行配置,这里使用 SPI 总线对每个 AD9267 芯片进行寄存器配置,使得 AD9627 工作在 LVDS 模式。

FPGA的 AD 测试的功能框图如下:

下面对 FPGA 程序中用到的各个模块做一下简单的功能介绍:

1. lut_config.v

AD9627寄存器配置表,这里只配置了2个寄存器的值,一个是寄存器 0x14,

另一个是寄存器 0x FF。

对寄存器 0x14 配置成 LVDS 输出格式,输出为 offset binary 模式。

Addr (Hex)	Register Name	Bit 7 (MSB)	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0 (LSB)	Default Value (Hex)	Default Notes/ Comments
0x14	Output Mode	Drive strength 0 V to 3.3 V CMOS or ANSI LVDS; 1 V to 1.8 V CMOS or reduced LVDS (global)	Output type 0 = CMOS 1 = LVDS (global)	Open	Output enable bar (local)	Open	Output invert (local)	00 = offse 01 = twos 01 = gray 11 = offse (loca	et binary complement code et binary al)	0x00	Configures the outputs and the format of the data

对寄存器 0x14 配置后,需要对 0xFF 寄存器的最低位写1后才能生效。

Addr (Hex)	Register Name	Bit 7 (MSB)	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0 (LSB)	Default Value (Hex)	Default Notes/ Comments
0xFF	Transfer	Open	Open	Open	Open	Open	Open	Open	Transfer	0x00	Synchronously transfers data from the master shift register to the slave

具体的寄存器含义大家参考 AD9627 芯片手册。

2. spi_config.v

此模块通过调用 SPI 通信模块(adc_spi.v)对 AD9627 芯片进行寄存器配置,

配置的寄存器地址和值定义在 lut_config.v 文件里。

3. top.v

top 模块除了实例化上面的子模块外,还实现以下几个功能。

- ◇ 调用 PLL IP 产生 AD9627 芯片所需的 125Mhz 参考时钟。
- ◇ 调用 IBUFDS 原语实现 LVDS 差分时钟信号和数据信号转换成单端时钟和单端数据。
- ◇ 调用 IDDR 原语实现双沿的 A, B 通道的数据转换成单沿的 A 通道数据和 B 通道数据。

ALINX

4. xdc 约束文件

xdc 约束文件里定义了两个 AD 的通信的管脚及 ILA 调试接口,用户可以自 己修改 ILA 的接口信号来观察自己想观察的信号。

第四部分 硬件连接和测试

FL9627 模块和 FPGA 开发板的硬件连接很简单,只要把 FMC 接口跟开发板的 FMC 接口对插就可以,然后用螺丝固定。我们这边使用信号发生器产生模拟信号连接到 AD1_A 通道的 SMA 接口上。以下为黑金 AX7325 开发板的和 FL9627 的硬件连接图:

开发板上电, 信号发生器产生-5V~+5V 的正选波 , 频率为 200Khz, 然后在 Vivado 环境下下载程序 ,

🝌 Program Device		×
Select a bitstream prog select a debug probes programming file.	gramming file and download it to your hardware device. You can optionally file that corresponds to the debug cores contained in the bitstream	4
		_
Bitstre <u>a</u> m file:	E:/Project/AX7325/adc_test_4ch/adc_test.runs/impl_1/top.bit	
Debu <u>q</u> probes file:	E:/Project/AX7325/adc_test_4ch/adc_test.runs/impl_1/top.ltx	
✓ Enable end of s	tartup check	
?	Program Canc	el

这里会出现 hw_ila_1 的界面,在 hw_ila_1 界面里显示第一路 AD 模块的通 道 A 和通道 B 的 AD 采集数据。点击"Run trigger mode for this ILA core"按钮, adc1_data_a_d0 通道会显示正选波。

改变信号发送器使它产生-5V~+5V的方波,再点击"Run trigger mode for this ILA core"按钮, adc1_data_a_d0 通道会显示方波。我们这里可以看到+5V 的时候, AD 采集的数据为 04e, -5V 的时候 AD 采集的数据为 fb3。

如果用户需要测量另外一个 AD2 的波形,需要把模拟信号输入到 AD2 的通道 A 或者通道 B 上。然后双击 hw_ila_2 就会显示 hw_ila_2 的界面。

dc_test_4ch/adc_test.zpr] - Vivado 2017.4									
w Layout View Help Q- Quick Access									
	D	ashboard 👻							
	Hardware		? _ C X hw_ila_1 × hw_ila_2 ×						
	Q 🕺 🛓 🌲	•		Waveform - hw ila 2					
	Name		Status	é					
	 ✓ i localhost (1) ✓ i vilinx_ttfDigilent/2102498546 ✓ i xc7k325t_0 (3) i XADC (System Monitor) i hw ila 1 (u ila 0) i hw.ila_2 (u_ila_1) 		Connected D						
			Open	ard	ILA Status: Idle				
			Programmed &	oque	Name	Value	<u>۹</u>		
				õ					
			Oldle	Ш	> 📑 adc2_datad0[11:1				
			Oldle						
	<		>		> 📢 adc2_datad0[11:0				
	ILA Core Properties ?		_ 0 C ×						
	🍯 hw_ila_2		- ÷ ¢						
	Name: hw_ila_2								
	Cell:	u_ila_1			Settings - hw_ila_2 St	atus - hw_ila_;	2 ×	? _ 🗆	